Preliminary communication

Cyclooct-1-ene-5-yne tetraruthenium undecacarbonyl

R. MASON and K.M. THOMAS

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received August 7th, 1972)

SUMMARY

 $Ru_4(CO)_{11}C_8H_{10}$ has the four metal atoms in a "butterfly" conformation; the carbonyl groups are all terminally bonded, the cyclooct-1-ene-5-yne ligand being coordinated to the four ruthenium atoms via " σ " " π " and " μ " bonds.

The reactions of cycloocta-1,S-diene with the tetrameric cluster, α -H₄Ru₄(CO)₁₂, are summarised in the accompanying report¹. Two of the products, Ru₄(CO)₁₁C₈H₁₀ and H₂Ru₃(CO)₉C₈H₁₂, have been examined by X-ray diffraction methods; the analysis of the tetranuclear complex is essentially complete and is described here.

The crystals (cyclohexane) are monoclinic, space group $P2_1/n$, with a = 10.499(2), b = 14.764(3), c = 14.724(3) Å, $\beta = 90.88^{\circ}$; Z = 4, $D_c = D_m = 2.43$ g·cm⁻³. 2157 reflexions with $F_{ODS}^{\circ} > 3.0 \sigma (F^2)$ have been observed by four-circle diffractometry (Mo-K α , graphite monochromator) and heavy atom Fourier methods have provided the structural arrangement; least squares analysis has converged R to 0.059 for the data which are presently uncorrected for (small) absorption effects. The stereochemistry is shown in Fig.1; e.s.d.'s in the bond lengths average 0.002 Å (Ru-Ru), 0.015 Å (Ru-C) and 0.025 Å (C-C and C-O).

The geometry is very similar to that of $Co_4(CO)_{10}(C_2H_5 C \equiv CC_2H_5)^2$ in that the four metal atoms are in a butterfly conformation; each acetylenic carbon atom C_1 and C_2 forms one metal-carbon " σ " bond of average length 2.16 Å (to Ru₁ and Ru₂) and two " μ " bonds of length 2.21 Å (to Ru₃ and Ru₄)*. Only the "hinge" bond (Ru₁-Ru₂)

J. Organometal. Chem., 43 (1972)

95

^{*} These symmetry designations of the bonds are intended only to be descriptive and consistent with earlier suggestions²; the symmetry of the individual bonds is low.

Fig.1. Stereochemistry of Ru₄ (CO)₁₁ C₈ H₁₀.

has a bond length which is significantly different from the average length (2.47 Å) of the remaining metal-metal bonds; the dihedral angle between the two planes containing $Ru_1-Ru_2-Ru_4$ and $Ru_1-Ru_2-Ru_3$ respectively is 112°.

The conformation of the macrocyclic ligand is obviously dictated by the bonding and steric requirements of the cluster. The equality, within experimental error, of the bonds, C_1-C_2 and C_5-C_6 , is evidence for considerable charge transfer between the cluster and the acetylenic bond. In the present complex the " μ " bonds are only 0.05 Å longer than the metal-carbon "o" bonds, the corresponding difference being 0.09 Å in $Co_4(CO)_{10}(C_2H_5C=CC_2H_5)$ and up to 0.25 Å in several benzyne complexes of csmium clusters³; the variations can be related, *inter alia*, to the nature of the other ligands coordinated to the metals, and to the need to preserve a high degree of cyclic delocalisation in coordinated benzyne.

We are grateful to the Science Research Council for support.

REFERENCES

- 1 A.J. Canty, B.F.G. Johnson and J. Lewis, J. Organometal Chem., 43 (1972) C35.
- 2 L.F. Dahl and D.L. Smith, J. Amer. Chem. Soc., 84 (1962) 2450.
- 3 C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Ireland and R. Mason, Chem. Commun (1972) 87; G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, C.W. Bradford and R.S. Nyholm, J. Organometal. Chem., 40 (1972) C70.
- J. Organometal. Chem., 43 (1972)