Preliminary communication

Cyclooct-1-ene-5-yne tetraruthenium undecacarbonyl

R. MASON and K.M. THOMAS
School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received August 7th, 1972)

SUMMARY
$\mathrm{Ru}_{4}(\mathrm{CO})_{11} \mathrm{C}_{8} \mathrm{H}_{10}$ has the four metal atoms in a "butterfly" conformation; the carbonyl groups are all terminaily bonded, the cyclooct-1-ene-5-yne ligand being coordinated to the four ruthenium atoms via " σ " " π " and " μ " bonds.

The reactions of cycloocta-1,5-diene with the tetrameric cluster, $\alpha-\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{12}$, are summarised in the accompanying report ${ }^{1}$. Two of the products, $\mathrm{Ru}_{4}(\mathrm{CO})_{11} \mathrm{C}_{8} \mathrm{H}_{10}$ and $\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{C}_{8} \mathrm{H}_{12}$, have been examined by X-ray diffraction methods; the analysis of the tetranuclear complex is essentially complete and is described here.

The crystals (cyclohexane) are monoclinic, space group $P 2_{1} / n$, with $a=10.499$ (2), $b=14.764(3), c=14.724(3) \AA, \beta=90.88^{\circ} ; Z=4, D_{\mathrm{c}}=D_{\mathrm{m}}=2.43 \mathrm{~g} \cdot \mathrm{~cm}^{-3} .2157 \mathrm{re}-$ flexions with $F_{\text {obs }}^{\prime}>3.0 \sigma\left(F^{2}\right)$ have been observed by four-circle diffractometry (Mo-K α, graphite monochromator) and heavy atom Fourier methods have provided the structural arrangement; least squares analysis has converged R to 0.059 for the data which are presently uncorrected for (small) absorption effects. The stereochemistry is shown in Fig.1; e.s.d.'s in the bond lengths average $0.002 \AA(\mathrm{Ru}-\mathrm{Ru}), 0.015 \AA(\mathrm{Ru}-\mathrm{C})$ and $0.025 \AA(\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$).

The geometry is very similar to that of $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{2} \mathrm{H}_{5}\right)^{2}$ in that the four metal atoms are in a butterfly conformation; each acetylenic carbon atom C_{1} and C_{2} forms one metal-carbon " σ " bond of average length $2.16 \AA$ (to $R u_{1}$ and $R u_{2}$) and two " μ " bonds of length $2.21 \AA\left(\right.$ to $R u_{3}$ and $\left.R u_{4}\right) \star$. Only the "hinge" bond $\left(R u_{1}-R u_{2}\right)$

[^0]

Fig.1. Stereochemistry of $\mathrm{Ru}_{4}(\mathrm{CO})_{11} \mathrm{C}_{3} \mathrm{H}_{20}$.
has a bond length which is significantly different from the average length ($2.47 \AA$) of the remaining metal-metal bonds; the dihedral angle between the two planes containing $\mathrm{Ru}_{1}-\mathrm{Ru}_{2}-\mathrm{Ru}_{4}$ and $\mathrm{Ru}_{1}-\mathrm{Ru}_{2}-\mathrm{Ru}_{3}$ irspectively is 112°.

The conformation of the macrocyclic ligand is obviously dictated by the bonding and steric requirements of the cluster. The equality, within experimental error, of the bonds, $C_{1}-C_{2}$ and $C_{5}-C_{6}$, is evidence for considerable charge transfer between the clusted and the acetylenic bond. In the present complex the " μ " bonds are only $0.05 \AA$ longer than the metal-carbon " σ " bonds, the corresponding difference being $0.09 \AA$ in $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{2} \mathrm{H}_{5}\right)$ and up to $0.25 \AA$ in several benzyne complexes of csmium clusters ${ }^{3}$; the variations can be related, inter alia, to the nature of the other ligands coordinated to the metals, and to the need to preserve a high degree of cyclic delocalisation in coordinated benzyne.

We are grateful to the Science Research Council for support.

REFERENCES

1 A.J. Canty, B.F.G. Johnson and J. Lewis, J. Organometal Chem., 43 (1972) C35.
2 L.F. Dahl and D.L. Smith, J. Amer. Chem Soc., 84 (1962) 2450.
3 C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Leland and R. Mason, Chem. Commun (1972) 87; G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, C.W. Bradford and R.S. Nyholm, J. Organometal Chem, 40 (1972) C70.

[^0]: \# These symmetry designations of the bonds are intended only to be descriptive and consistent with earlier suggestions ${ }^{2}$; the symmetry of the individual bonds is low.

